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21. List structures
Learning objectives:

• static vs dynamic data structures

• linear, circular and two-way lists

• fifo queue implemented as a linear list

• breadth-first and depth-first tree traversal

• traversing a binary tree without any auxiliary memory: triple tree traversal algorithm

• dictionary implemented as a binary search tree

• Balanced trees guarantee that dictionary operations can be performed in logarithmic time

• height-balanced trees

• multiway trees

Lists, memory management, pointer variables 

The spectrum of data structures ranges from static objects, such as a table of constants, to dynamic structures,  

such as lists. A list is designed so that not only the data values stored in it, but its size and shape can change at run 

time, due to insertions, deletions, or rearrangement of data elements. Most of the data structures discussed so far 

can change their size and shape to a limited extent. A circular buffer, for example, supports insertion at one end and  

deletion at  the other,  and can  grow to a  predeclared  maximal  size.  A heap supports  deletion at  one end and 

insertion anywhere into an array. In a list, any local change can be done with an effort that is independent of the  

size of the list - provided that we know the memory locations of the data elements involved. The key to meeting this  

requirement is the idea of abandoning memory allocation in large contiguous chunks, and instead allocating it 

dynamically in the smallest chunk that will hold a given object.  Because data elements are stored randomly in  

memory, not contiguously, an insertion or deletion into a list does not propagate a ripple effect that shifts other 

elements around. An element inserted is allocated anywhere in memory where there is space and tied to other 

elements by  pointers (i.e. addresses of the memory locations where these elements happen to be stored at the 

moment). An element deleted does not leave a gap that needs to be filled as it would in an array. Instead, it leaves  

some free space that can be reclaimed later by a memory management process. The element deleted is likely to  

break some chains that tie other elements together; if so, the broken chains are relinked according to rules specific  

to the type of list used.

Pointers  are  the  language  feature  used  in  modern  programming  languages  to  capture  the  equivalent  of  a 

memory address. A pointer value is essentially an address, and a pointer variable ranges over addresses. A pointer,  

however, may contain more information than merely an address. In Pascal and other strongly typed languages, for 

example, a pointer also references the type definition of the objects it can point to - a feature that enhances the 

compiler's ability to check for consistent use of pointer variables.

Let us illustrate these concepts with a simple example: a  one-way linear list is a sequence of cells each of 

which (except the last) points to its successor. The first cell is the head of the list, the last cell is the tail. Since the  
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tail has no successor, its pointer is assigned a predefined value 'nil', which differs from the address of any cell.  

Access to the list is provided by an external pointer 'head'. If the list is empty, 'head' has the value 'nil'. A cell stores  

an element xi and a pointer to the successor cell (Exhibit 21.1):

type cptr = ^cell;

cell = record  e: elt;  next: cptr  end;

Exhibit 21.1: A one-way linear list.

Local operations, such as insertion or deletion at a position given by a pointer p, are efficient. For example, the  

following statements insert a new cell containing an element y as successor of a cell being pointed at by p ( Exhibit

21.2):

new(q);  q^.e := y;  q^.next := p^.next;  p^.next := q;

Exhibit 21.2: Insertion as a local operation.

The successor of the cell pointed at by p is deleted by a single assignment statement (Exhibit 21.3):

p^.next := p^.next^.next;

Exhibit 21.3: Deletion as a local operation.

An insertion or deletion at the head or tail of this list is a special case to be handled separately. To support  

insertion at the tail, an additional pointer variable 'tail' may be set to point to the tail element, if it exists.

A one-way linear list sometimes is handier if the tail points back to the head, making it a  circular list. In a 

circular list, the head and tail cells are replaced by a single entry cell, and any cell can be reached from any other 

without having to start at the external pointer 'entry' (Exhibit 21.4).

Exhibit 21.4: A circular list combines head and tail into a single entry point
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In a  two-way (or  doubly linked)  list each cell  contains two pointers,  one to its  successor,  the other  to its 

predecessor. The list can be traversed in both directions. Exhibit 21.5 shows a circular two-way list.

Exhibit 21.5: A circular two-way or doubly-linked list

Exercise: traversal of a singly linked list in both directions

Write a recursive

procedure traverse(p: cptr);

to traverse a singly linked list from the head to the tail and back again. At each visit of a node, call the

procedure visit(p: cptr);

Solve  the same problem iteratively  without  using any additional  storage beyond a  few local  pointers.  Your  

traversal procedure may modify the structure of the list temporarily.

Solution
(a) procedure traverse(p: cptr);

begin  if  p ≠ nil  then  { visit(p);  traverse(p^.next); 

visit(p) }  end;

The initial call of this procedure is

traverse(head);

(b) procedure traverse(p: cptr);

var  o, q: cptr;  i: integer;

begin

for  i := 1  to  2  do  { forward and back again }  begin

o := nil;

while  p ≠ nil  do  begin

visit(p);  q := p^.next;  p^.next := o;

o := p;  p := q  { the fork advances }

end;

p := o

end

end;

Traversal becomes simpler if we let the 'next' pointer of the tail 

cell point to this cell itself:

procedure traverse(p: cptr);

var o, q: cptr;

begin

o := nil;

while  p ≠ nil  do  begin

visit(p);  q := p^.next;  p^.next := o;

o := p;  p := q  { the fork advances }

end

end;
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The fifo queue implemented as a one-way list 

It is natural to implement a fifo queue as a one-way linear list, where each element points to the next one "in  

line". The operation 'dequeue' occurs at the pointer 'head', and 'enqueue' is made fast by having an external pointer  

'tail' point to the last element in the queue. A crafty implementation of this data structure involves an empty cell,  

called a  sentinel, at the tail of the list. Its purpose is to make the list-handling procedures simpler and faster by 

making the empty queue look more like all other states of the queue. More precisely, when the queue is empty, the  

external pointers 'head' and 'tail' both point to the sentinel rather than having the value 'nil'. The sentinel allows 

insertion into the empty queue, and deletion that results in an empty queue, to be handled by the same code that 

handles the general case of 'enqueue' and 'dequeue'. The reader should verify our claim that a sentinel simplifies the  

code by programming the plausible, but less efficient, procedures which assume that an empty queue is represented 

by head = tail = nil.

The queue is empty if and only if 'head' and 'tail' both point to the sentinel (i.e. if head = tail). An 'enqueue' 

operation is performed by inserting the new element into the sentinel cell and then creating a new sentinel.

type cptr = ^cell;

cell = record  e: elt;  next: cptr  end;

fifoqueue = record  head, tail: cptr  end;

procedure create(var f: fifoqueue);

begin  new(f.head);  f.tail := f.head  end;

function empty(f: fifoqueue): boolean;

begin  return(f.head = f.tail)  end;

procedure enqueue(var f: fifoqueue; x: elt);

begin  f.tail^.e := x;  new(f.tail^.next);  f.tail := f.tail^.next 

end;

function front(f: fifoqueue): elt;

{ not to be called if the queue is empty }

begin  return(f.head^.e)  end;

procedure dequeue(var f: fifoqueue);

{ not to be called if the queue is empty }

begin  f.head := f.head^.next  end;

Tree traversal

When  we  speak  of  trees  in  computer  science,  we  usually  mean  rooted,  ordered  trees: they  have  a 

distinguished node called the root, and the subtrees of any node are ordered. Rooted, ordered trees are best defined  

recursively: a tree T is either empty, or it is a tuple (N, T1, … , Tk), where N is the root of the tree, and T1, … , Tk is a 

sequence of trees. Binary trees are the special case k = 2.

Trees are typically used to organize data or activities in a hierarchy: a top-level data set or activity is composed of  

a next level of data or activities, and so on. When one wishes to gather or survey all of the data or activities, it is  

necessary to traverse the tree, visiting (i.e. processing) the nodes in some systematic order. The visit at each node  

might be as simple as printing its contents or as complicated as computing a function that depends on all nodes in 

the tree. There are two major ways to traverse trees: breadth first and depth first.

Breadth-first  traversal visits  the  nodes  level  by  level.  This  is  useful  in  heuristic  search,  where  a  node  

represents  a  partial  solution  to  a  problem,  with  deeper  levels  representing  more  complete  solutions.  Before 

pursuing any one solution to a great depth, it may be advantageous to assess all the partial solutions at the present  
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level, in order to pursue the most promising one. We do not discuss breadth-first traversal  further, we merely 

suggest the following:

Exercise: breadth-first traversal

Decide  on  a  representation  for  trees  where  each  node  may  have  a  variable  number  of  children.  Write  a  

procedure for breadth-first traversal of such a tree. Hint: use a fifo queue to organize the traversal. The node to be 

visited is removed from the head of the queue, and its children are enqueued, in order, at the tail end.

Depth-first traversal always moves to the first unvisited node at the next deeper level, if there is one. It turns  

out that depth-first better fits the recursive definition of trees than breadth-first does and orders nodes in ways that  

are more often useful. We discuss depth-first for binary trees and leave the generalization to other trees to the  

reader.  Depth-first  can  generate  three  basic  orders  for  traversing  a  binary  tree:  preorder,  inorder,  and 

postorder, defined recursively as:

preorder Visit root, traverse left subtree, traverse right subtree.

Inorder Traverse left subtree, visit root, traverse right subtree.

postorder Traverse left subtree, traverse right subtree, visit root.

For the tree in Exhibit 21.6we obtain the orders shown.

Exhibit 21.6: Standard orders defined on a binary tree

An arithmetic expression can be represented as a binary tree by assigning the operands to the leaves and the  

operators  to  the  internal  nodes.  The  basic  traversal  orders  correspond to  different  notations  for  representing 

arithmetic  expressions.  By traversing the expression tree  (Exhibit  21.7)  in  preorder,  inorder,  or  postorder,  we 

obtain the prefix, infix, or suffix notation, respectively.

Exhibit 21.7: Standard traversal orders correspond to different notations for arithmetic expressions

A binary tree can be implemented as a list structure in many ways. The most common way uses an external 

pointer 'root' to access the root of the tree and represents each node by a cell that contains a field for an element to 

be stored, a pointer to the root of the left subtree, and a pointer to the root of the right subtree (Exhibit 21.8). An 

empty left or right subtree may be represented by the pointer value 'nil', or by pointing at a sentinel, or, as we shall  

see, by a pointer that points to the node itself.

type nptr = ^node;

node = record  e: elt;  L, R: nptr  end;

var root: nptr;
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Exhibit 21.8: Straightforward implementation of a binary tree 

The following procedure 'traverse' implements any or all of the three orders preorder, inorder, and postorder,  

depending on how the procedures 'visit1', 'visit2', and 'visit3' process the data in the node referenced by the pointer p. 

The root of the subtree to be traversed is passed through the formal parameter p. In the simplest case, a visit does  

nothing or simply prints the contents of the node.

procedure traverse(p: nptr);

begin

if  p ≠ nil  then  begin

visit1(p);  { preorder }

traverse(p^.L);

visit2(p);  { inorder }

traverse(p^.R);

visit3(p)  { postorder }

end

end; 

Traversing a tree involves both advancing from the root toward the leaves, and backing up from the leaves 

toward the root. Recursive invocations of the procedure 'traverse' build up a stack whose entries contain references 

to the nodes for which 'traverse' has been called. These entries provide a means of returning to a node after the  

traversal of one of its subtrees has been finished. The bookkeeping done by a stack or equivalent auxiliary structure  

can be avoided if the tree to be traversed may be modified temporarily.

The following triple-tree traversal algorithm provides an elegant and efficient way of traversing a binary tree 

without using any auxiliary memory (i.e. no stack is used and it is not assumed that a node contains a pointer to its  

parent node). The data structure is modified temporarily to retain the information needed to find the way back up  

the  tree  and to  restore  each  subtree  to  its  initial  condition  after  traversal.  The  triple-tree  traversal  algorithm 

assumes that an empty subtree is encoded not by a 'nil' pointer, but rather by an L (left) or R (right) pointer that 

points to the node itself, as shown in Exhibit 21.9.
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Exhibit 21.9: Coding of a leaf used in procedure TTT

procedure TTT;

var  o, p, q: nptr;

begin

o := nil;  p:= root;

while  p ≠ nil  do  begin

visit(p);

q := p^.L;

p^.L := p^.R;  { rotate left pointer }

p^.R := o;  { rotate right pointer }

o := p;

p := q

end

end;

In  this  procedure  the  pointers  p  ("present")  and  o  ("old")  serve  as  a  two-pronged fork.  The  tree  is  being  

traversed by the pointer p and the companion pointer o, which always lags one step behind p. The two pointers 

form a two-pronged fork that runs around the tree, starting in the initial condition with p pointing to the root of the 

tree, and o = nil. An auxiliary pointer q is needed temporarily to advance the fork. The while loop in 'TTT' is  

executed as long as p points to a node in the tree and is terminated when p assumes the value 'nil'. The initial value 

of the o pointer gets saved as a temporary value. First it is assigned to the R pointer of the root, later to the L  

pointer.  Finally,  it  gets assigned to p,  the fork exits from the root of  the tree,  and the traversal  of  the tree  is  

complete. The correctness of this algorithm is proved by induction on the number of nodes in the tree.

Induction hypothesis H: if at the beginning of an iteration of the while loop, the fork pointer p points to the root  

of a subtree with n > 0 nodes, and o has a value x that is different from any pointer value inside this subtree, then  

after 3 · n iterations the subtree will have been traversed in triple order (visiting each node exactly three times), all  

tree pointers in the subtree will have been restored to their original value, and the fork pointers will have been  

reversed (i.e. p has the value x and o points to the root of the subtree).

Base of induction: H is true for n = 1.

Proof: The smallest tree we consider has exactly one node, the root alone. Before the while loop is executed for  

this subtree, the fork and the tree are in the initial state shown inExhibit 21.10. Exhibit 21.11 shows the state of the 

fork and the tree after each iteration of the while loop. The node is visited in each iteration.

Exhibit 21.10 : Initial configuration for traversing a tree consisting of a single node
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Exhibit 21.11: Tracing procedure TTT while traversing the smallest tree

Induction step: If H is true for all n, 0 < n ≤ k, H is also true for k + 1.

Proof: Consider a tree T with k + 1 nodes. T consists of a root and k nodes shared among the left and right 

subtrees of the root. Each of these subtrees has ≤ k nodes, so we apply the induction hypothesis to each of them. 

The  following is  a  highly  compressed account  of  the proof  of  the induction step,  illustrated  by  Exhibit  21.12. 

Consider the tree with k + 1 nodes shown in state 1. The root is a node with three fields; the left and right subtrees  

are shown as triangles. The figure shows the typical case when both subtrees are nonempty. If one of the two 

subtrees is empty, the corresponding pointer points back to the root; these two cases can be handled similarly to the  

case n = 1. The fork starts out with p pointing at the root and o pointing at anything outside the subtree being  

traversed. We want to show that the initial state 1 is transformed in 3 · (k + 1) iterations into the final state 6. In the 

final state the subtrees are shaded to indicate that they have been correctly traversed; the fork has exited from the 

root, with p and o having exchanged values. To show that the algorithm correctly transforms state 1 into state 6, we  

consider the intermediate states 2 to 5, and what happens in each transition.

1 → 2 One iteration through the while loop advances the fork into the left subtree and rotates the pointers of the 

root.

2 → 3 H applied to the left subtree of the root says that this subtree will be correctly traversed, and the fork will 

exit from the subtree with pointers reversed.

3 → 4 This is the second iteration through the while loop that visits the root. The fork advances into the right 

subtree, and the pointers of the root rotate a second time.

4 → 5 H applied to the right subtree of the root says that this subtree will be correctly traversed, and the fork will 

exit from the subtree with pointers reversed.

5→ 6 This is the third iteration through the while loop that visits the root. The fork moves out of the tree being 

traversed; the pointers of the root rotate a third time and thereby assume their original values.
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Exhibit 21.12: Trace of procedure TTT, invoking the induction hypothesis

Exercise: binary trees

Consider a binary tree declared as follows:

type nptr = ^node;

node = record  L, R: nptr  end;

var root: nptr;

(a) If a node has no left or right subtree, the corresponding pointer has the value 'nil'. Prove that a binary tree  

with n nodes, n > 0, has n + 1 'nil' pointers.
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(b) Write a function nodes(…): integer; that returns the number of nodes, and a function depth(…): integer; 

that returns the depth of a binary tree. The depth of the root is defined to be 0; the depth of any other node 

is the depth of its parent increased by 1. The depth of the tree is the maximum depth of its nodes.

Solution

(a) Each node contains two pointers, for a total of 2 · n pointers in the tree. There is exactly one pointer that 

points to each of n – 1 nodes, none points to the root. Thus 2 · n – (n – 1) = n + 1 pointers are 'nil'. This can 

also be proved by induction on the number of nodes in the tree.

(b) function nodes(p: nptr): integer;

begin

if  p = nil  then

return(0)

else

return(nodes(p^.L) + nodes(p^.R) + 1)

end;

function depth(p: nptr): integer;

begin

if  p = nil then return (–1)

else return(1 + max(depth(p^.L), depth(p^.R)))

end;

where 'max' is

function max(a, b: integer): integer;

begin  if  a > b  then  return(a)  else  return(b)  end;

Exercise: list copying

Effective  memory  management  sometimes  makes  it  desirable  or  necessary  to  copy  a  list.  For  example,  

performance may improve drastically if a list spread over several pages can be compressed into a single page. List  

copying involves a traversal of the original concurrently with a traversal of the copy, as the latter is being built up.

(a) Consider binary trees built from nodes of type 'node' and pointers of type 'nptr'. A tree is accessed through 

a pointer to the root, which is 'nil' for an empty tree

type nptr = ^ node;

node = record  e: elt;  L, R: nptr  end;

Write a recursive

function cptree(p: nptr): nptr;

to copy a tree given by a pointer p to its root, and return a pointer to the root of the copy.

(b) Consider arbitrary graphs built from nodes of a type similar to the nodes in (a), but they have an additional 

pointer field cn, intended to point to the copy of a node:

type  node = record  e: elt;  L, R: nptr;  cn: nptr  end;

A graph is accessed through a pointer to a node called the origin, and we are only concerned with nodes that can 

be reached from the origin; this access pointer is 'nil' for an empty graph. Write a recursive

function cpgraph(p: nptr): nptr;
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to copy a graph given by a pointer p to its origin, and return a pointer to the origin of the copy. Use the field cn,  

assuming that its initial value is 'nil' in every node of the original graph; set it to 'nil' in every node of the copy.

Solution
(a) function cptree(p: nptr): nptr;

var  cp: nptr;

begin

if  p = nil  then

return(nil)

else  begin

new(cp);

cp^.e := p^.e;  cp^.L := cptree(p^.L);  cp^.R := cptree(p^.R);

return(cp)

end

end;

(b) function cpgraph(p: nptr): nptr;

var  cp: nptr;

begin

if  p = nil  then

return(nil)

elsif  p^.cn ≠ nil  then  { node has already been copied }

return(p^.cn)

else  begin

new(cp);  p^.cn := cp;  cp^.cn := nil;

cp^.e := p^.e;  cp^.L := cpgraph(p^.L);  cp^.R := cpgraph(p^.R);

return(cp)

end

end;

Exercise: list copying with constant auxiliary memory

Consider binary trees as in part (a) of the preceding exercise. Memory for the stack implied by the recursion can  

be saved by writing an iterative tree copying procedure that uses only a constant amount of auxiliary memory. This 

requires a trick, as any depth-first traversal must be able to back up from the leaves toward the root. In the triple-

tree traversal procedure, the return path is temporarily encoded in the tree being traversed. This idea can again be 

used here, but there is a simpler solution: The return path is temporarily encoded in the R-fields of the copy; the L-

fields of certain nodes of the copy point back to the corresponding node in the original. Work out the details of a 

tree-copying procedure that works with O(1) auxiliary memory.

Exercise: traversing a directed acyclic graph 

A directed graph consists of nodes and directed arcs, where each arc leads from one node to another. A directed 

graph is acyclic if the arcs form no cycles. One way to ensure that a graph is acyclic is to label nodes with distinct  

integers and to draw each arc from a lower number to a higher number. Consider a binary directed acyclic graph,  

where each node has two pointer fields, L and R, to represent at most two arcs that lead out of that node. An 

example is shown in Exhibit 21.13.

Exhibit 21.13: A rooted acyclic graph.
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(a) Write a program to visit every node in a directed acyclic graph reachable from a pointer called 'root'. You  

are free to execute procedure 'visit' for each node as often as you like.

(b) Write a program similar to (a) where you are required to execute procedure 'visit' exactly once per node. 

Hint: Nodes may need to have additional fields.

Exercise: counting nodes on a square grid

Consider a network superimposed on a square grid: each node is connected to at most four neighbors in the 

directions east, north, west, south (Exhibit 21.14):

type nptr = ^node;

node = record  E, N, W, S: nptr;  status: boolean  end;

var origin: nptr;

Exhibit 21.14: A graph embedded in a square grid.

A 'nil' pointer indicates the absence of a neighbor. Neighboring nodes are doubly linked: if a pointer in node p  

points to node q, the reverse pointer of q points to p; (e.g., p^.W = q and q^.E = p). The pointer 'origin' is 'nil' or  

points to a node. Consider the problem of counting the number of nodes that can be reached from 'origin'. Assume  

that the status field of all nodes is initially set to false. How do you use this field? Write a function nn(p: nptr):  

integer; to count the number of nodes.

Solution
function nn(p: nptr): integer;

begin

if  p = nil cor p^.status  then

return(0)

else  begin 

p^.status:= true;

return(1 + nn(p^.E) + nn(p^.N) + nn(p^.W) + nn(p^.S))

end

end;

Exercise: counting nodes in an arbitrary network

We generalize the problem above to arbitrary directed graphs, such as that of  Exhibit 21.15, where each node 

may have any number of neighbors. This graph is represented by a data structure defined by Exhibit 21.16 and the 

type definitions below. Each node is linked to an arbitrary number of other nodes.

Exhibit 21.15: An arbitrary (cyclic) directed graph.
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Exhibit 21.16: A possible implementation as a list structure.

type nptr = ^node;  cptr = ^cell;

node = record  status: boolean;  np: nptr;  cp: cptr  end; 

cell = record  np: nptr;  cp: cptr  end;

var origin: nptr;

The pointer 'origin' has the value 'nil' or points to a node. Consider the problem of counting the number n of  

nodes that can be reached from 'origin'. The status field of all nodes is initially set to false. How do you use it? Write  

a function nn(p: nptr): integer; that returns n.

Binary search trees

A binary search tree is a binary tree T where each node N stores a data element e(N) from a domain X on  

which a total order ≤ is defined, subject to the following order condition: For every node N in T, all elements in the 

left subtree L(N) of N are < e(N), and all elements in the right subtree R(N) of N are > e(N). Let x1,  2, … , xn be n 

elements drawn from the domain X.

Definition:  A binary search tree for x1, x2, … , xn is a binary tree T with n nodes and a one-to-one mapping 

between the n given elements and the n nodes, such that

 ∀ N in T  ∀ N' ∈  L(N)  ∀ N" ∈  R(N):  e(N') < e(N) < e(N")

Exercise

Show that the following statement is equivalent to this order condition: The inorder traversal of the nodes of T 

coincides with the natural order < of the elements assigned to the nodes.

Remark:  The order condition can be relaxed to e(N') ≤ e(N) < e(N") to accommodate multiple occurrences of 

the same value, with only minor modifications to the statements and algorithms presented in this section. For 

simplicity's sake we assume that all values in a tree are distinct.

The order condition permits binary search and thus guarantees a worst-case search time O(h) for a tree of height  

h.  Trees  that  are  well  balanced  (in  an  intuitive  sense;  see  the  next  section  for  a  definition),  that  have  not 

degenerated into linear lists, have a height h = O(log n) and thus support search in logarithmic time.
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Basic operations on binary search trees are most easily implemented as recursive procedures. Consider a tree  

represented as in the preceding section, with empty subtrees denoted by 'nil'. The following function 'find' searches

for an element x in a subtree pointed to by p. It returns a pointer to a node containing x if the search is successful,  

and 'nil' if it is not.

function find(x: elt; p: nptr): nptr;

begin

if  p = nil  then  return(nil)

elsif  x < p^.e  then  return(find(x, p^.L))

elsif  x > p^.e  then  return(find(x, p^.R))

else  { x = p^.e }  return(p)

end;

The following procedure 'insert' leaves the tree alone if the element x to be inserted is already stored in the tree. 

The parameter p initially points to the root of the subtree into which x is to be inserted.

procedure insert(x: elt; var p: nptr);

begin

if  p = nil  then  { new(p);  p^.e := x;  p^.L := nil;  p^.R := 

nil }

elsif  x < p^.e  then  insert(x, p^.L)

elsif  x > p^.e  then  insert(x, p^.R)

end;

Initial call:

insert(x, root);

To delete an element x, we first have to find the node N that stores x. If this node is a leaf or semileaf (a node  

with only one subtree), it is easily deleted; but if it has two subtrees, it is more efficient to leave this node in place 

and to replace its element x by an element found in a leaf or semileaf node, and delete the latter (Exhibit 21.17). 

Thus we distinguish three cases:

1. If N has no child, remove N.

2. If N has exactly one child, replace N by this child node.

3. If N has two children, replace x by the largest element y in the left subtree, or by the smallest element z in  

the right subtree of N. Either of these elements is stored in a node with at most one child, which is removed  

as in case (1) or (2).
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Exhibit 21.17: Element x is deleted while preserving its node N. Node N is 

filled with a new value y, whose old node is easier to delete. 

A sentinel is again the key to an elegant iterative implementation of binary search trees. In a node with no left or  

right child, the corresponding pointer points to the sentinel. This sentinel is a node that contains no element; its left 

pointer points to the root and its right pointer points to itself. The root, if it exists, can only be accessed through the  

left pointer of the sentinel. The empty tree is represented by the sentinel alone (Exhibit 21.18). A typical tree is 

shown in Exhibit 21.19.

Exhibit 21.18: The empty binary tree is represented by the sentinel which points to itself.

Exhibit 21.19: A binary tree implemented as a list structure with 

sentinel.

The following implementation of a dictionary as a binary search tree uses a sentinel accessed via the variable d:

type nptr = ^node;

node = record  e: elt;  L, R: nptr  end;

dictionary = nptr;

procedure create(var d: dictionary);

begin  {create sentinel }  new(d);  d^.L := d;  d^.R := d  end;
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function member(d: dictionary; x: elt): boolean;

var  p: nptr;

begin

d^.e := x;  { initialize element in sentinel }

p := d^.L;  { point to root, if it exists }

while  x ≠ p^.e  do

if  x < p^.e  then  p := p^.L  else  { x > p^.e }  p := p^.R;

return(p ≠ d)

end;

Procedure 'find' searches for x. If found, p points to the node containing x, and q to its parent. If not found, p  

points to the sentinel and q to the parent-to-be of a new node into which x will be inserted.

procedure find(d: dictionary; x: elt; var p, q: nptr);

begin

d^.e := x;  p := d^.L;  q := d;

while  x ≠ p^.e  do  begin

q := p;

if  x < p^.e  then  p := p^.L  else  { x > p^.e }  p := p^.R

end

end;

procedure insert(var d: dictionary; x: elt);

var  p, q: nptr;

begin

find(d, x, p, q);

if  p = d  then  begin  { x is not yet in the tree }

new(p);  p^.e := x;  p^.L := d;  p^.R := d;

if  x ≤ q^.e  then  q^.L := p  else  { x > q^.e }  q^.R := p

end

end;

procedure delete(var d: dictionary; x: elt);

var  p, q, t: nptr;

begin

find(d, x, p, q);

if  p ≠ d  then  { x has been found }

if  (p^.L ≠ d) and (p^.R ≠ d)  then  begin

{ p has left and right children; find largest element in left 

subtree }

t := p^.L;  q:= p;

while  t^.R ≠ d  do  { q := t;  t := t^.R };

if  t^.e < q^.e  then  q^.L := t^.L  else  { t^.e > q^.e } 

q^.R := t^.L

p^.e := t^.e;

end

else  begin  { p has at most one child }

if p^.L ≠ d  then{ left child only } p := p^.L

elsif p^.R ≠ d  then{ right child only } p := p^.R

else { p has no children }p := d;

if  x ≤ q^.e  then  q^.L := p  else  { x > q^.e }  q^.R := p

end

end;

In the best case of a completely balanced binary search tree for n elements, all leaves are on levels  [log2  n] or 

[log2 n]– 1, and the search tree has the height  [log2 n]. The cost for performing the 'member', 'insert', or 'delete' 

operation is bounded by the longest path from the root to a leaf (i.e. the height of the tree) and is therefore O(log n). 
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Without any further provisions, a binary search tree can degenerate into a linear list in the worst case. Then the cost  

for each of the operations would be O(n).

What  is  the  expected  average  cost  for  the  search  operation  in  a  randomly  generated binary  search  tree? 

"Randomly generated" means that each permutation of the n elements to be stored in the binary search tree has the 

same probability of being chosen as the input sequence. Furthermore, we assume that the tree is generated by 

insertions only. Therefore, each of the n elements is equally likely to be chosen as the root of the tree. Let pn be the 

expected path length of a randomly generated binary search tree storing n elements. Then

As shown in chapter 16 in the section “Recurrence relations”, this recurrence relation has the solution

Since the average search time in randomly generated binary search trees, measured in terms of the number of 

nodes visited, is pn / n and ln 4 ≈ 1.386, it follows that the cost is O(log n) and therefore only about 40 per cent 

higher than in the case of completely balanced binary search trees.

Balanced trees: general definition

If insertions and deletions occurred at random, and the assumption of the preceding section was realistic, we 

could let search trees grow and shrink as they please, incurring a modest increase of 40 per cent in search time over 

completely  balanced  trees.  But  real  data  are  not  random:  they  are  typically  clustered,  and  long  runs  of  

monotonically  increasing  or  decreasing  elements  occur,  often  as  the  result  of  a  previous  processing  step.  

Unfortunately, such deviation from randomness degrades the performance of search trees.

To prevent search trees from degenerating into linear lists, we can monitor their shape and restructure them 

into  a  more  balanced shape whenever they have  become too skewed.  Several  classes  of  balanced search trees  

guarantee that each operation 'member', 'insert', and 'delete' can be performed in time O(log  n) in the worst case. 

Since the work to be done depends directly on the height of the tree, such a class B of search trees must satisfy the 

following two conditions (hT is the height of a tree T, nT is the number of nodes in T):

Balance condition:  ∃ c > 0  ∀ T ∀  B:  hT ≤ c · log2 nT

Rebalancing condition:  If an 'insert' or 'delete' operation, performed on a tree T ∈ B, yields a tree T' ∉ B, it 

must be possible to rebalance T' in time O(log n) to yield a tree T" ∈ B.

Example: almost complete trees

The class  of  almost  complete  binary  search  trees  satisfies  the  balance  condition  but  not  the  restructuring 

condition. In the worst case it takes time O(n) to restructure such a binary search tree (Exhibit 21.20), and if 'insert' 

and 'delete' are defined to include any rebalancing that may be necessary, these operations cannot be guaranteed to  

run in time O(log n).
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Exhibit 21.20: Restructuring: worst case

In the next two sections we present several classes of balanced trees that meet both conditions: the height-

balanced or AVL-trees (G. Adel'son-Vel'skii and E. Landis, 1962) [AL 62] and various multiway trees, such as B-

trees [BM 72, Com 79] and their generalization, (a,b)-trees [Meh 84a].

AVL-trees, with their small nodes that hold a single data element, are used primarily for storing data in main  

memory. Multiway trees, with potentially large nodes that hold many elements, are also useful for organizing data  

on secondary storage devices, such as disks, that allow direct access to sizable physical data blocks. In this case, a  

node is typically chosen to fill a physical data block, which is read or written in one access operation.

Height-balanced trees

Definition:  A binary tree is height-balanced if, for each node, the heights of its two subtrees differ by at most 

one. Height-balanced search trees are also called AVL-trees. Exhibit 21.21 to Exhibit 21.23 show various AVL-trees, 

and one that is not.

Exhibit 21.21: Examples of height-balanced trees

Exhibit 21.22: Example of a tree not height-balanced;the marked node violates the balance condition.

A "most-skewed" AVL-tree Th is an AVL-tree of height h with a minimal number of nodes. Starting with T 0 and 

T1 shown in Exhibit 21.23, Th is obtained by attaching Th–1 and Th–2 as subtrees to a new root.
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Exhibit 21.23: Most skewed AVL trees of heights h = 0 through h = 4

The number of nodes in a most-skewed AVL-tree of height h is given by the recurrence relation

nh = nh–1 + nh–2 + 1,  n0 = 1,  n1 = 2.

In the section on recurrence relations in the chapter entitled “The mathematics of algorithm analysis”, it has 

been shown that the recurrence relation

mh = mh–1 + mh–2,  m0 = 0,  m1 = 1

has the solution

Since nh = mh+3 – 1 we obtain

Since 

it follows that 

and therefore nh behaves asymptotically as
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Applying the logarithm results in

Therefore, the height of a worst-case AVL-tree with n nodes is about 1.44 · log2 n. Thus the class of AVL-trees 

satisfies the balance condition, and the 'member' operation can always be performed in time O(log  n).

We now show that  the class  of  AVL-trees  also  satisfies  the rebalancing condition.  Thus AVL-trees  support 

insertion and deletion in time O(log n). Each node N of an AVL-tree has one of the balance properties / (left-

leaning), \ (right-leaning), or – (horizontal), depending on the relative height of its two subtrees.

Two local tree operations, rotation and double rotation, allow the restructuring of height-balanced trees that 

have been disturbed by an insertion or deletion. They split a tree into subtrees and rebuild it in a different way. 

Exhibit  21.24 shows a  node,  marked black,  that  got  out  of  balance,  and how a local  transformation builds  an 

equivalent tree (for the same elements, arranged in order) that is balanced. Each of these transformations has a 

mirror image that is not shown. The algorithms for insertion and deletion use these rebalancing operations as 

described below.

Exhibit 21.24: Two local rebalancing operations

Insertion

A new element is inserted as in the case of a binary search tree. The balance condition of the new node becomes  

– (horizontal). Starting at the new node, we walk toward the root of the tree, passing along the message that the  

height of the subtree rooted at the current node has increased by one. At each node encountered along this path, an  

operation determined by the following rules is performed. These rules depend on the balance condition of the node 

before the new element was inserted, and on the direction from which the node was entered (i.e. from its left or  

right child).
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Rule I1:  If the current node has balance condition –, change it to / or \ depending on whether we entered from 

the node's left or from its right child. If the current node is the root, terminate; if not, continue to follow the path 

upward.

Rule I2:  If the current node has balance condition / or \ and is entered from the subtree that was previously  

shorter, change the balance condition to—and terminate (the height of the subtree rooted at the current node has 

not changed).

Rule I3:  If the current node has balance condition / or \ and is entered from the subtree that was previously  

taller, the balance condition of the current node is violated and gets restored as follows:

(a) If the last two steps were in the same direction (both from left children, or both from right children), an  

appropriate rotation restores all balances and the procedure terminates.

(b) If the last two steps were in opposite directions (one from a left child, the other from a right child), an 

appropriate double rotation restores all balances and the procedure terminates.

The initial insertion travels along a path from the root to  a leaf, and the rebalancing process travels back up 

along the same path. Thus the cost of an insertion in an AVL-tree is O(h), or O(log n) in the worst case. Notice that 

an insertion calls for at most one rotation or double rotation, as shown in the example in Exhibit 21.25.

Example

Insert 1, 2, 5, 3, 4, 6, 7 into an initially empty AVL-tree (Exhibit 21.25). The balance condition of a node is shown 

below it. Boldfaced nodes violate the balance condition.
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Exhibit 21.25: Trace of consecutive insertions and the rebalancings they trigger

Deletion

An element is deleted as in the case of a binary search tree. Starting at the parent of the deleted node, walk 

towards the root, passing along the message that the height of the subtree rooted at the current node has decreased  

by one. At each node encountered, perform an operation according to the following rules. These rules depend on  

the balance condition of the node before the deletion and on the direction from which the current node and its child 

were entered.

Rule D1:  If the current node has balance condition –, change it to \ or / depending on whether we entered from  

the node's left or from its right child, and terminate (the height of the subtree rooted at the current node has not  

changed).

Rule D2:  If the current node has balance condition / or \ and is entered from the subtree that was previously  

taller, change the balance condition to – and continue upward, passing along the message that the subtree rooted at  

the current node has been shortened.

Rule D3:  If the current node has balance condition / or \ and is entered from the subtree that was previously  

shorter,  the balance condition is  violated at  the current  node.  We distinguish three subcases  according to the 
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balance  condition  of  the  other  child  of  the  current  node  (consider  also  the  mirror  images  of  the  following 

illustrations):

(a)

X Y
Z

a
b

X
Y

Z

b
a

rotation

An appropriate rotation restores the balance of the current node without changing the height of the subtree 

rooted at this node. Terminate.

(b)

X
Y Z

b
a

X Y Z

a
b

rotation

A rotation restores the balance of the current node. Continue upward, passing along the message that the  

subtree rooted at the current node has been shortened.

(c)

double rotation

W

a
b

c
a

b
c

X Y
Z W X Y Z

A double rotation restores the balance of the current node. Continue upward, passing along the message that  

the subtree rooted at the current node has been shortened. Similar transformations apply if either X or Y, but not  

both, are one level shorter than shown in this figure. If so, the balance conditions of some nodes differ from those  

shown, but this has no influence on the total height of the subtree. In contrast to insertion, deletion may require 

more than one rotation or double rotation to restore all balances. Since the cost of a rotation or double rotation is  

constant, the worst-case cost for rebalancing the tree depends only on the height of the tree, and thus the cost of a  

deletion in an AVL-tree is O(log n) in the worst case.

Multiway trees

Nodes in a multiway tree may have a variable number of children. As we are interested in balanced trees, we add  

two restrictions. First, we insist that all leaves (the nodes without children) occur at the same depth. Second, we 

constrain the number of children of all internal nodes by a lower bound a and an upper bound b. Many varieties of  

multiway trees are known; they differ in details, but all are based on similar ideas. For example, (2,3)-trees are 

defined by the requirement that all internal nodes have either two or three children. We generalize this concept and 

discuss (a,b)-trees.

Definition:  Consider a domain X on which a total order ≤ is defined. Let a and b be integers with 2 ≤ a and 2 · 

a – 1 ≤ b. Let c(N) denote the number of children of node N. An (a,b)-tree is an ordered tree with the following 

properties:
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• All leaves are at the same level

• 2 ≤ c(root) ≤ b

• For all internal nodes N except the root, a ≤ c(N) ≤ b

A node with k children contains k – 1 elements x1 < x2 < … < xk–1 drawn from X; the subtrees corresponding to 

the k children are denoted by T1, T2, … , Tk. An (a,b)-tree supports "c(N) search" in the same way that a binary tree 

supports binary search, thanks to the following order condition:

• y ≤ xi for all elements y stored in subtrees T1, … , Ti

• xi < z for all elements z stored in subtrees Ti+1, … , Tk

Definition:  (a,b)-trees with b = 2 · a – 1 are known as B-trees [BM 72, Com 79].

The algorithms we discuss operate on internal nodes, shown in white in  Exhibit 21.26, and ignore the leaves, 

shown in black. For the purpose of understanding search and update algorithms, leaves can be considered fictitious 

entities used only for counting. In practice, however, things are different. The internal nodes merely constitute a  

directory to a file that is stored in the leaves. A leaf is typically a physical storage unit, such as a disk block, that 

holds all the records whose key values lie between two (adjacent) elements stored in internal nodes.

Exhibit 21.26: Example of a (3,5)-tree

The number n of elements stored in the internal nodes of an (a,b)-tree of height h is bounded by 

and thus 

this shows that the class of (a,b)-trees satisfies the balance condition h = O(log n). We show that this class also 

meets the rebalancing condition, namely, that (a,b)-trees support insertion and deletion in time O(log n).

Insertion

Insertion of a new element x begins with a search for x that terminates unsuccessfully at a leaf. Let N be the 

parent  node  of  this  leaf. If  N contained fewer  than  b  –  1  elements  before  the  insertion,  insert  x  into  N  and 

terminate. If N was full, we imagine b elements temporarily squeezed into the overflowing node N. Let m be the 

median of these b elements, and use m to split N into two: a left node NL populated by the (b – 1)  / 2 elements 

smaller than m, and a right node NR populated by the (b – 1) / 2 elements larger than m. The condition 2 · a – 1 ≤ b 

ensures that  (b – 1) / 2  ≥ a – 1, in other words, that each of the two new nodes contains at least a – 1 elements.

The median element m is pushed upward into the parent node, where it serves as a separator between the two  

new nodes NL and NR that now take the place formerly inhabited by N. Thus the problem of insertion into a node at 

a given level is replaced by the same problem one level higher in the tree. The new separator element may be  

absorbed in a nonfull parent, but if the parent overflows, the splitting process described is repeated recursively. At  
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worst,  the splitting process propagates to the root of the tree, where a new root that contains only the median 

element is created. (a,b)-trees grow at the root, and this is the reason for allowing the root to have as few as two 

children.

Deletion

Deletion of an element x begins by searching for it. As in the case of binary search trees, deletion is easiest at the 

bottom of the tree, at a node of maximal depth whose children are leaves. If x is found at a higher level of the tree,  

in a node that has internal nodes as children, x is the separator between two subtrees T L and TR. We replace x by 

another element z, either the largest element in TL or the smallest element in TR, both of which are stored in a node 

at the bottom of the tree. After this exchange, the problem is reduced to deleting an element z from a node N at the  

deepest level.

If deletion (of x or z) leaves N with at least a – 1 elements, we are done. If not, we try to restore N's occupancy  

condition by stealing  an element from an adjacent sibling node M. If  there is  no sibling M that can spare an 

element, that is, if M is minimally occupied, M and N are merged into a single node L. L contains the a – 2 elements  

of N, the a – 1 elements of M, and the separator between M and N which was stored in their parent node, for a total  

of 2 · (a – 1) ≤ b – 1 elements. Since the parent (of the old nodes M and N, and of the new node L) lost an element in 

this merger, the parent may underflow. As in the case of insertion, this underflow can propagate to the root and 

may cause its deletion. Thus (a,b)-trees grow and shrink at the root.

Both insertion and deletion work along a single path from the root down to a leaf and (possibly) back up. Thus 

their time is bounded by O(h), or equivalently, by O(log n): (a,b)-trees can be rebalanced in logarithmic time.

Amortized cost. The performance of (a,b)-trees is better than the worst-case analysis above suggests. It can be 

shown that the total cost of any sequence of s insertions and deletions into an initially empty (a,b)-tree is linear in 

the length s of the sequence: whereas the worst-case cost of a single operation is O(log n), the amortized cost per 

operation is O(1) [Meh 84a]. Amortized cost is a complexity measure that involves both an average and a worst-case  

consideration. The average is taken over all operations in a sequence; the worst case is taken over all sequences.  

Although any one operation may take time O(log n), we are guaranteed that the total of all s operations in any  

sequence of length s can be done in time O(s), as if each single operation were done in time O(1).

Exhibit 21.27: A slightly skewed (3,5)-tree.

Exercise: insertion and deletion in a (3,5)-tree

Starting with the (3,5)-tree shown in  Exhibit 21.27, perform the sequence of operations: insert 38, delete 10, 

delete 12, delete 50. Draw the tree after each operation.

Solution

Inserting 38 causes a leaf and its parent to split (Exhibit 21.28). Deleting 10 causes underflow, remedied by 

borrowing an element from the left  sibling (Exhibit  21.29). Deleting 12 causes underflow in both a leaf and its 

parent, remedied by merging (Exhibit 21.30). Deleting 50 causes merging at the leaf level and borrowing at the 

parent level (Exhibit 21.31).
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Exhibit 21.28: Node splits propagate towards the root

Exhibit 21.29: A deletion is absorbed by borrowing

Exhibit 21.30: Another deletion propagates node merges towards the root

Exhibit 21.31: Node merges and borrowing combined

(2,3)-trees are the special case a = 2, b = 3: each node has two or three children. Exhibit 21.32 omits the leaves. 

Starting with the tree in state 1 we insert the value 9: the rightmost node at the bottom level overflows and splits,  

the median 8 moves up into the parent. The parent also overflows, and the median 6 generates a new root (state 2).  

The deletion of 1 is absorbed without any rebalancing (state 3). The deletion of 2 causes a node to underflow,  

remedied by stealing an element from a sibling: 2 is replaced by 3 and 3 is replaced by 4 (state 4). The deletion of 3 
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triggers the merger of  the nodes assigned to 3 and 5;  this  causes an underflow in their  parent,  which in turn 

propagates to the root and results in a tree of reduced height (state 5).

Exhibit 21.32: Tracing insertions and deletions in a (2,3)-tree

As  mentioned earlier,  multiway  trees  are  particularly  useful  for  managing  data  on  a  disk.  If  each  node  is  

allocated to its own disk block, searching for a record triggers as many disk accesses as there are levels in the tree.  

The depth of the tree is minimized if the maximal fan-out b is maximized. We can pack more elements into a node  

by shrinking their size. As the records to be stored are normally much larger than their identifying keys, we store 

keys only in the internal nodes and store entire records in the leaves (which we had considered to be empty until  

now). Thus the internal nodes serve as an index that assigns to a key value the path to the corresponding leaf.

Exercises and programming projects

 1. Design and implement a list structure for storing a sparse matrix. Your implementation should provide 

procedures for inserting, deleting, changing, and reading matrix elements.

 2. Implement a fifo queue by a circular list using only one external pointer f and a sentinel. f always points to 

the sentinel and provides access to the head and tail of the queue.

 3. Implement a double-ended queue (deque) by a doubly linked list.

 4. Binary search trees and sorting A binary search tree given by the following declarations is used to manage 

a set of integers:

type nptr = ^node 

node = record  L, R: nptr;  x: integer  end; 

var root: nptr;

The empty tree is represented as root = nil.

(a) Draw the result of inserting the sequence 6, 15, 4, 2, 7, 12, 5, 18 into the empty tree.
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(b) Write a procedure smallest(var x: integer); which returns the smallest number stored in the tree, and a 

procedure  remove  smallest;  which  deletes  it.  If  the  tree  is  empty  both  procedures  should  call  a 

procedure message('tree is empty');

(c) Write a procedure sort; that sorts the numbers stored in var a: array[1 .. n] of integer; by inserting the  

numbers into a binary search tree, then writing them back to the array in sorted order as it traverses  

the tree.

(d) Analyze the asymptotic time complexity of 'sort' in a typical and in the worst case.

(e) Does this approach lead to a sorting algorithm of time complexity Θ (ν •  λογ ν) 

 5. Extend the implementation of a dictionary as a binary search tree in the “Binary search trees” section to  

support the operations 'succ' and 'pred' as defined in chapter 19 in the section “Dictionary”.

 6. Insertion and deletion in AVL-trees: Starting with an empty AVL-tree, insert 1, 2, 5, 6, 7, 8, 9, 3, 4, in this 

order. Draw the AVL-tree after each insertion. Now delete all elements in the opposite order of insertion 

(i.e. in last-in-first-out order). Does the AVL-tree go through the same states as during insertion but in  

reverse order?

 7. Implement an AVL-tree supporting the dictionary operations 'insert', 'delete', 'member', 'pred', and 'succ'.

 8. Explain how to find the smallest  element in  an (a,b)-tree and how to find  the predecessor of  a  given  

element in an (a,b)-tree.

 9. Implement a dictionary as a B-tree. 
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